Verifying clock-domain crossing at RTL IP level usi ng
coverage-driven methodology

Jean-Francois Vizier
STEricsson
12, rue Jules Horowitz
38000 Grenoble, FRANCE
+33-47658-6068
jean-francois.vizier@stericsson.com

ABSTRACT

Usage of a GALS approach for a SoC implies theticneaf several
asynchronous paths. These paths can be criticathiorsystem as
some of them are part of the system bus. They megspecial
attention during verification.

RTL simulations are not able to model either CD8ués or their
effects. Gate level simulations are delay awarecandd fill the gap.
But they can only be performed late in the projdifts which makes
this solution inappropriate.

This paper presents the verification methodologyetimed to
address this topic early, during IP RTL simulation$his

methodology responds to the following constraintsr design
instrumentation, coverage-driven verification colpty and easy
reuse. The final section presents some interestisigts achieved by
applying the methodology to real multi-clock IPs.

Categories and Subject Descriptors
B.6.3[Logic Design]. Design Aids Verification

General Terms
Verification.

Keywords
GALS, metastability, CDC, eVC, methodology, coveratyiven
verification.

1. INTRODUCTION

Digital baseband SoCs developed for 3G multimedreongs
integrate more and more features. As the targetkdiequency is
drastically increasing, it's getting unviable toekea fully balanced
clock tree for all the SoC. Consequently a GALSrepph is used.
The outcome is that many CDC paths are preseheabdundary of
each synchronous domain. These CDC paths are ntathively as
they are supporting huge data transfers inside Sh€. Hence,
special care must be paid in the verification esthpaths.

A flip-flop which is the end point of a clock domagrossing (CDC)

path is subject to timing violation due to asynetism of the clocks.

The flip-flop can enter in a metastable state wh&chdangerous for

the rest of the chip. We present in Section 2ghisnomenon and the
way to minimize the probability of its propagation.

Structures used to reduce propagation of metasyat@n't avoid the
effects of this phenomenon. Data can be corruptetithe design
must be resistant. Simulations can’t properly maldese effects. We

Dennis Ramaekers
STEricsson
12, rue Jules Horowitz
38000 Grenoble, FRANCE
+33-47658-7123
dennis.ramaekers@stericsson.com

Zheng Hai Zhou
STEricsson
88, Zihai Rd,
200241 Shanghai, CHINA
+86-21-2418-8970
zhenghai.zhou@stericsson.com

will present the limitations of the simulators irclon 3 and the
model we propose to fill the gap in Section 4.

A methodology has been defined to benefit from thizdel. This
methodology will be detailed in Section 5. In Sewti6, we will
present the results we could obtain with it.

2. ASYNCHRONOUS DESIGN ISSUES

In order to observe a deterministic behavior atahput of a flip-
flop, its data input must remain stable duringgbtip and hold time.

Tserup Tho\d
—T>

1

1

1
STABLE

1

1

>
>

t

Figure 1 — Timing constraint for D pin of flip-flops

When these timings are not respected (i.e. a transbn D occurs
too close to CK edge), the behavior of the flipgfloutput is
unpredictable: the output can stabilize either @y Q. In some cases,
the output can also become metastable, which mesuikating at a
level between 0 and 1. This oscillation should djeeand finally
settle to 0 or 1 randomly after a resolution time.

In asynchronous designs, there is no way to gueeasdtup and hold
time for first flip-flops in the receiving clock dmain. So
metastability and data corruptions will occur fowatt reason. The
design must be resistant to those issues.

Some structures exist to reduce metastability myaan probability,
in particular the n flip-flop synchronizer, preseain figure 2.

FFA FFB FFB
Din oo b W 2/ Dout
[R
I I
CK1 ! I ko

Figure 2 — n flip-flop synchronizer

Design constraints determine the number n of FRBflibps to
instantiate.

This structure reduces the probability for metatitabto be
propagated on Dout but doesn't ensure data comsstnThis
becomes an issue when several resynchronized sigg@nverge in
the receiving clock domain.

—l—l\@ﬂ*

Figure 3 — Reconvergence in receiving clock domain

If In1 and In2 both violate setup/hold window on Bad D2, data
may become incoherent between Q1 and Q2 duringoif@ving
receiving clock cycle, as shown in figure 4.

CK
Inl

In2
01

02

>
>

t

Figure 4 — Data incoherency in receiving clock doma

If those resynchronized signals reconverge in #eeiving clock
domain, special care must be taken in the desigseoto deal with
this incoherent data. This has to be verified.

3. SIMULATION MODELS LIMITATIONS

3.1 RTL Simulations

When performing RTL simulations, flip-flops are nabedd as
sequential elements with no setup/hold time infdioma On the

clock rising edge, the input is copied on the ottpath no

consideration of timing violation. So, there islass of bugs related
to metastability which cannot be detected with aditional RTL

model.

3.2 Gate level Simulations

Gate level simulation provides a solution to maiiteing violation
issues. It uses a back-annotated netlist, provioedhe physical
implementation team.

This netlist is available when back-end tasks dready very
advanced, which means late in the project life. Whamore, this
netlist is not available independently for each IP.

Another issue with gate level simulations is the flip-flop model
is the behavioral model which is described in thealies. This
model can detect a setup/hold violation but doesmodel
metastability effect and data corruption in a usalhy. The model
introduces an X on the output of the flip-flop fone clock cycle
when a setup/hold violation is detected. So, tad¥opropagation,
the timing checks are disabled.

4. PROPOSED MODEL

To address the lack of accurate simulation modelsew model of
metastability effects and data corruption is need&is model has to
represent a “realistic simplification” of what ocswon silicon. Some
requirements have to be respected.

4.1 Model requirements
The model must correspond to the following requiets:
e Usable in RTL simulations
« Doesn't need design instrumentation
« Doesn't have significant impact on run-time
« Easily reusable from one IP to another
« Provide coverage on exercised data corruptions.

4.2 Injector cell

To cope with those requirements we have definedhgctor cell,
described in Specman’s e language. By using Spean&it benefit
from the advanced constraints solver and coveragtuifes. We'll
also use the tool to monitor and force signalsrauthe simulation,
so there is no need to modify the DUT.

An injector cell is connected around each firsp-flop of the
receiving clock domain and will add, during RTL silations, a
model of timing violation for the input of the flifiop.

corruption_injector Data

corruption is
injected here

FFA FFB

CK1 CK2

Figure 5 — Data corruption injector

The injector cell monitors two pins of the flipflodata and clock.
When a transition occurs on the input, close todloek edge, the
injector generates an event to indicate a timirgdation. Length of
setup and hold windows are dynamically configurable

When a timing violation event is generated, a ramdgnerator will
decide to corrupt or not the data on the outpuhefflip-flop. This
random generator can be constrained on severalmptees
(simulation time, current Q value, kind of violatjo

Each injector can report its operations in the &itan log. It can
report detected timing violations and injected dataruptions.
Verbosity of injectors is configurable so to chodke appropriate
level of information depending on the maturity betverification
environment.

Injectors are instantiated in an existing verificat environment,
using macros. It's necessary to provide the patthéopins of the
flip-flops on which we want to model effects of tirg violations.

Once instantiated, injectors will then behave mrmdom way.

Having injectors instantiated in the verificationveéonment allows
to model effect of timing violations on CDC pati#s we want to
use these injectors in coverage driven verificaBamironments, we
need to collect coverage data.

4.3 Coverage Model

4.3.1 Signal level coverage
A first level of coverage is provided by each itgeccell. It is a
signal level coverage. It shows which kind of vt@as occurred for
the related flip-flop and reports the data cormupsi which were
inserted. It also crosses data.

Signal level coverage gives a good overview of glotorruption
injection. If all corruption injectors are enablé¢ldere will be a list of
coverage groups, each one related to an instruchéipeflop.

This can highlight some holes, related to flip-Bogn which timing
violations never occur. It can mean that testcaseselative clock
phases are not able to activate the corruptioctojs.

Once signal level coverage reaches the targeter vialis important
to focus on a higher level coverage, especially rd@nvergence
coverage.

4.3.2 Reconvergence coverage

As highlighted in section 2, when several signaésrasynchronized
into the receiving clock domain, there can be aslo$ data
coherency between these signals. This can givessureiif those
signals are reconverging in the receiving clock diom

The design has to be robust enough to handle tlizga

incoherencies and its own behavior has to be eerifThe purpose of
the reconvergence coverage is to ensure that abilgle data
incoherencies combinations have been generatduehipjectors.

A bus level monitor allows to collect events andaddt collects
events and data coming from several corruptiorctojs. Here is its
instantiation:

corruption_injector

A 4

corruption_injector

corruption_bus_monito
corruption_injector 4

A\ A 4

corruption_injector

Figure 6 — Bus monitor cell instantiation

Each time a corruption is performed by an injectam, event is
emitted. This event is received by the corruptios Imonitor. The
bus monitor then collects values from the injectrd defines which
was the simulated value and which value has beeedo

These values are used to perform a cross covesgedn simulated
and forced values.

This monitor provides several crossed items, enguall possible
data incoherencies are simulated. It is then thle ¢dthe scoreboard
to perform data checking.

5. VERIFICATION FLOW

Usage of injector cells allow to model CDC issues RTL
simulations. These injectors have to be added ineaisting
verification environment. And it is mandatory tcstantiate them on
all first flip-flops of the receiving clock domains

To ensure efficient usage of these injectors, énattlogy has been
defined.

As injectors must be plugged in an existing veaificn environment,
the methodology can be composed of two main phases:

¢ Phase 1:

verification environment for a multi-clock IP.

e Phase 2: Usage of the injectors in the verification

environment built in phase 1.

Here is a detailed description of those phases.

5.1 Phase 1

Typical functional verification applies to multiagk IPs. This first
phase consists in the building of the verificatemvironment. It must
respect the coverage driven verification methodpkgd pay special
care to the clock generation.

Clocks must be generated according to clock saemadefining
clock frequencies at which the IP will have to wofkese scenarios
must appear in verification plan of phase 1.

The coverage of phase 1 needs the full functiooat@age of the IP,
which has to be crossed with the clock scenariesrage. Here is a
summary of phase 1 steps.

v

Verification docs [« » Clock scenarios
writing definition

v v

Verification J Clock generator
environment and [% o and
tests writing drivers

implementation

4 A 4 +

RTL simulations | Coverage items
and debu 1 for clock scenariod

Coverage of Coverage of Clock
Functional Featur: scenario
Coverage of phase 1

Figure 7 — Phase 1 steps

A 4

This figure shows typical verification steps on tlet. Steps are
added on the right to deal with multi-clock aspects

Building of a standard coverage driven

This first phase is qualified with a coverage whigla cross of the IP
functional coverage and the clock scenarios coeerag

Once the coverage has reached the targeted vaisi¢inie to switch
to phase 2, to address CDC issues.

5.2 Phase 2

In this phase, we can investigate specific CDCassthanks to the
injectors. There must be one injector instantidt@deach flip-flop

subject to metastability, i.e. each first flip-flayp a receiving clock
domain.

Phase 2 is divided in 3 steps: recognition, insamtation and
corruption. Here is a schematic view of phase 2:

l

Recognition

A\ 4
Instrumentation

»
>

\ 4
Corruption

Signal level
coverage

Reconvergence
coverage

Coverage of
Phase 2

Figure 8 — Phase 2 steps

5.2.1 Recognition

Injectors have to be connected on each flip-flophjett to
metastability. Recognition step consists in idgmg all
synchronization elements of the DUT.

This recognition must be as automated as posdtblethat, we rely
on structural checking tool, in our case Spyglassnf Atrenta.
Spyglass contains some CDC check rules which cavige the list
of CDC path endpoints.

e clock_sync02 which
synchronization structures.

e clock_sync01 which reports unrecognized synchraioza
structures. As we want to model effect of timinglations
on all flip-flops which are subject to it, we netedconsider
this list.

reports the recognized

From these reports, it's possible to build thedispins on which the
injectors must be connected.

The methodology directly relies on the correctnefshis list. So,
special care must be given to the setup of Spygemsk to the
filtering of its reports.

Reconvergence coverage requires the lists of rbsgnized signals
which reconverge in the receiving clock domain. Has task, we
also use Spyglass. Several CDC check rules aressageto build
the list of reconverging signals:

e Clock_sync03b provides reconvergence of signalsirggm
from different clock domains.

e Ac_convOl and Ac_conv02 provide reconvergence of

signals coming from the same clock domain.

5.2.2 Instrumentation
This step consists in the instantiation of thedtges and of the bus
monitors.

Injectors are instantiated by loading an e-configjon file. This file
contains the configuration of each injector. Thanfiguration is
done thanks to macros and is directly given by tis¢ of
synchronization elements provided by the recogmisitep.

Bus monitors will collect information from severajectors, in order
to build reconvergence coverage. The instantiatiothese monitors
is also done in an e-configuration file. It consist defining the list
of injectors a bus monitor is connected to. Thisik provided by the
recognition step.

The writing of the e-configuration files is doneattks to a script,
using the outputs of the recognition step.

5.2.3 Corruption
This step consists in running the regression lithase 1, with the
injectors activated.

Running the regression with the injectors mighgger some new
bugs. To help debug, it is then possible to coirsttee injectors so
to deactivate some of them or activate them imicgst! conditions.

Phase 2 ends when the targeted coverage is reaSbetk loops
might be required with design teams when targetednvergence
coverage is not reachable. It can occur when sanenwerging
signals have mutually exclusive states or transitio Those
transitions must be removed from the reconvergenuerage.

5.3 Verification qualification

The quality of the verification is measured thartks the full
coverage. This coverage is given by the sum of remesof phase 1
and the coverage of phase 2.

Coverage of
phase 1

Coverage of
phase 2

Full coverage

Figure 9 — Full coverage definition

6. RESULTS

The methodology is being deployed on several asgncus IPs.
First application was done on asynchronous protdwalges, as
these IPs are inserted on critical data paths ®fS0C. It is now
used for clock generator and power management IPs.

The methodology allowed finding several bugs du€RC issues.
In particular, it was applied to an IP, in whicheobug was found
during gate level simulations. Thanks to the imgextthe bug could
be reproduced during the first RTL simulation.

Some coverage is provided automatically by the ageland can be
used for the qualification of the verification emnment. As

transitions on the inputs can be mutually exclusimesome case
manual refining is needed for the reconvergencemme goals.

The simulation run-time overhead has been compuiadan
asynchronous AXI-AXI bridge verification environmenThe
comparison is done, running the same test withstétme seed on the
environment of phase 1 and the environment of pHas@he
overhead is 37%.

The flexibility of the solution allows deploying d@n larger IPs, such
as system buses or in the future on NoCs. It & pdssible to benefit
of the corruption injectors during gate level siatidns. This way,
the behavioral model of the flip-flops could be widden to model
metastability effects.

7. CONCLUSIONS

GALS approach for new 3G baseband SoCs adds a flot
asynchronous paths. Some of those paths are estbnsised as
they are part of the system buses.

Special care must be given to the verificationhafse asynchronous
paths. But sequential elements receiving data fmanasynchronous
clock domain are subject to timing violations opithnput. As RTL
simulations are not able to model the effect obthtiming violation,
some bugs due to CDC issues are not detectable.

The methodology presented here provides a solttianodel CDC
issues in RTL simulations. This way, it allows digering bugs
related to metastability effects, early in the pobjlife.

The solution is compatible with a coverage drivegrification
methodology and can be added to an existing vatifin
environment. It doesn't require DUT instrumentationor
recompilation.

8. ACKNOWLEDGMENTS

Many persons contributed to develop the methodolagyg to
deploy/debug it.

I want to thank STEricsson design and verificatiseam members for
their support, useful advices and technical knogdesharing.

| also want to thank Patrick Oury, from Cadence, ifo efficient
support and his proposals for the developmentefrtfectors.

9. REFERENCES

[1] Mark Litterick, DVCon 2006 Pragmatic Simulati®@ased Verification of
Clock Domain Crossing Signals and Jitter usingesysferilog Assertions.
[2] Roger Sabbagh, Hiroaki Iwashita, DVCon 2008,eBdour Simulation
Model Metastability Effects Completely and Accutgte

[3] Clifford E. Cummings, Sunburst Design, Inc., $%&-2001, Synthesis and
Scripting Techniques for Designing Multi-AsynchrarscClock Designs

[4] Ran Ginosar, VLSI Systems Research Center, flienk-Israel Institute
of Technology, Proceedings of the Ninth InternaglorSymposium on
Asynchronous Circuits and Systems (ASYNC'03), Feemt Ways to Fool
Your Synchronizer

[5] Spyglass 4.2 Application Notes, Metastabilitynaysis in Dynamic
Verification Flow.

