
Verifying clock-domain crossing at RTL IP level usi ng
coverage-driven methodology

Jean-François Vizier

STEricsson
12, rue Jules Horowitz

38000 Grenoble, FRANCE
+33-47658-6068

jean-francois.vizier@stericsson.com

Dennis Ramaekers
STEricsson

12, rue Jules Horowitz
38000 Grenoble, FRANCE

+33-47658-7123
dennis.ramaekers@stericsson.com

Zheng Hai Zhou
STEricsson
88, Zihai Rd,

200241 Shanghai, CHINA
+86-21-2418-8970

zhenghai.zhou@stericsson.com

ABSTRACT
Usage of a GALS approach for a SoC implies the creation of several
asynchronous paths. These paths can be critical for the system as
some of them are part of the system bus. They require special
attention during verification.

RTL simulations are not able to model either CDC issues or their
effects. Gate level simulations are delay aware and could fill the gap.
But they can only be performed late in the projects life, which makes
this solution inappropriate.

This paper presents the verification methodology developed to
address this topic early, during IP RTL simulations. This
methodology responds to the following constraints: no design
instrumentation, coverage-driven verification compliancy and easy
reuse. The final section presents some interesting results achieved by
applying the methodology to real multi-clock IPs.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids, Verification

General Terms
Verification.

Keywords
GALS, metastability, CDC, eVC, methodology, coverage-driven
verification.

1. INTRODUCTION
Digital baseband SoCs developed for 3G multimedia phones
integrate more and more features. As the target clock frequency is
drastically increasing, it’s getting unviable to keep a fully balanced
clock tree for all the SoC. Consequently a GALS approach is used.
The outcome is that many CDC paths are present at the boundary of
each synchronous domain. These CDC paths are used intensively as
they are supporting huge data transfers inside the SoC. Hence,
special care must be paid in the verification of these paths.

A flip-flop which is the end point of a clock domain crossing (CDC)
path is subject to timing violation due to asynchronism of the clocks.
The flip-flop can enter in a metastable state which is dangerous for
the rest of the chip. We present in Section 2 this phenomenon and the
way to minimize the probability of its propagation.

Structures used to reduce propagation of metastability can’t avoid the
effects of this phenomenon. Data can be corrupted and the design
must be resistant. Simulations can’t properly model these effects. We

will present the limitations of the simulators in Section 3 and the
model we propose to fill the gap in Section 4.

A methodology has been defined to benefit from this model. This
methodology will be detailed in Section 5. In Section 6, we will
present the results we could obtain with it.

2. ASYNCHRONOUS DESIGN ISSUES
In order to observe a deterministic behavior at the output of a flip-
flop, its data input must remain stable during the setup and hold time.

Figure 1 – Timing constraint for D pin of flip-flops

When these timings are not respected (i.e. a transition on D occurs
too close to CK edge), the behavior of the flip-flop output is
unpredictable: the output can stabilize either to 0 or 1. In some cases,
the output can also become metastable, which means oscillating at a
level between 0 and 1. This oscillation should diverge and finally
settle to 0 or 1 randomly after a resolution time.

In asynchronous designs, there is no way to guarantee setup and hold
time for first flip-flops in the receiving clock domain. So
metastability and data corruptions will occur for that reason. The
design must be resistant to those issues.

Some structures exist to reduce metastability propagation probability,
in particular the n flip-flop synchronizer, presented in figure 2.

Figure 2 – n flip-flop synchronizer

Q

CK1

FFA FFB

Din Dout D Q D Q

CK2

D

FFB’

D Q

FFB’’

FF
D Q

CK DFF

t

CK

Tsetup Thold

STABLE

Design constraints determine the number n of FFB flip-flops to
instantiate.

This structure reduces the probability for metastability to be
propagated on Dout but doesn’t ensure data correctness. This
becomes an issue when several resynchronized signals reconverge in
the receiving clock domain.

Figure 3 – Reconvergence in receiving clock domain

If In1 and In2 both violate setup/hold window on D1 and D2, data
may become incoherent between Q1 and Q2 during the following
receiving clock cycle, as shown in figure 4.

Figure 4 – Data incoherency in receiving clock domain

If those resynchronized signals reconverge in the receiving clock
domain, special care must be taken in the design phase to deal with
this incoherent data. This has to be verified.

3. SIMULATION MODELS LIMITATIONS

3.1 RTL Simulations
When performing RTL simulations, flip-flops are modeled as
sequential elements with no setup/hold time information. On the
clock rising edge, the input is copied on the output with no
consideration of timing violation. So, there is a class of bugs related
to metastability which cannot be detected with a traditional RTL
model.

3.2 Gate level Simulations
Gate level simulation provides a solution to model timing violation
issues. It uses a back-annotated netlist, provided by the physical
implementation team.

This netlist is available when back-end tasks are already very
advanced, which means late in the project life. What is more, this
netlist is not available independently for each IP.

Another issue with gate level simulations is that the flip-flop model
is the behavioral model which is described in the libraries. This
model can detect a setup/hold violation but doesn’t model
metastability effect and data corruption in a usable way. The model
introduces an X on the output of the flip-flop for one clock cycle
when a setup/hold violation is detected. So, to avoid X propagation,
the timing checks are disabled.

4. PROPOSED MODEL
To address the lack of accurate simulation models, a new model of
metastability effects and data corruption is needed. This model has to
represent a “realistic simplification” of what occurs on silicon. Some
requirements have to be respected.

4.1 Model requirements
The model must correspond to the following requirements:

• Usable in RTL simulations
• Doesn’t need design instrumentation
• Doesn’t have significant impact on run-time
• Easily reusable from one IP to another
• Provide coverage on exercised data corruptions.

4.2 Injector cell
To cope with those requirements we have defined an injector cell,
described in Specman’s e language. By using Specman, we’ll benefit
from the advanced constraints solver and coverage features. We’ll
also use the tool to monitor and force signals during the simulation,
so there is no need to modify the DUT.

An injector cell is connected around each first flip-flop of the
receiving clock domain and will add, during RTL simulations, a
model of timing violation for the input of the flip-flop.

Figure 5 – Data corruption injector

The injector cell monitors two pins of the flip-flop: data and clock.
When a transition occurs on the input, close to the clock edge, the
injector generates an event to indicate a timing violation. Length of
setup and hold windows are dynamically configurable.

When a timing violation event is generated, a random generator will
decide to corrupt or not the data on the output of the flip-flop. This
random generator can be constrained on several parameters
(simulation time, current Q value, kind of violation).

Each injector can report its operations in the simulator log. It can
report detected timing violations and injected data corruptions.
Verbosity of injectors is configurable so to choose the appropriate
level of information depending on the maturity of the verification
environment.

In1
CK

In2
Q1

Q2

t

Q1

D2

D Q
C

D1

Q2’

In1

In2

CK2

D1’ Q1’

Q2 D2’

CK1

FFA FFB

D Q D Q

CK2

corruption_injector
Data

corruption is
injected here

Injectors are instantiated in an existing verification environment,
using macros. It’s necessary to provide the path to the pins of the
flip-flops on which we want to model effects of timing violations.

Once instantiated, injectors will then behave in a random way.

Having injectors instantiated in the verification environment allows
to model effect of timing violations on CDC paths. As we want to
use these injectors in coverage driven verification environments, we
need to collect coverage data.

4.3 Coverage Model

4.3.1 Signal level coverage
A first level of coverage is provided by each injector cell. It is a
signal level coverage. It shows which kind of violations occurred for
the related flip-flop and reports the data corruptions which were
inserted. It also crosses data.

Signal level coverage gives a good overview of global corruption
injection. If all corruption injectors are enabled, there will be a list of
coverage groups, each one related to an instrumented flip-flop.

This can highlight some holes, related to flip-flops on which timing
violations never occur. It can mean that testcases or relative clock
phases are not able to activate the corruption injectors.

Once signal level coverage reaches the targeted value, it is important
to focus on a higher level coverage, especially the reconvergence
coverage.

4.3.2 Reconvergence coverage
As highlighted in section 2, when several signals are resynchronized
into the receiving clock domain, there can be a loss of data
coherency between these signals. This can give an issue if those
signals are reconverging in the receiving clock domain.

The design has to be robust enough to handle these data
incoherencies and its own behavior has to be verified. The purpose of
the reconvergence coverage is to ensure that all possible data
incoherencies combinations have been generated by the injectors.

A bus level monitor allows to collect events and data. It collects
events and data coming from several corruption injectors. Here is its
instantiation:

Figure 6 – Bus monitor cell instantiation

Each time a corruption is performed by an injector, an event is
emitted. This event is received by the corruption bus monitor. The
bus monitor then collects values from the injectors and defines which
was the simulated value and which value has been forced.

These values are used to perform a cross coverage between simulated
and forced values.

This monitor provides several crossed items, ensuring all possible
data incoherencies are simulated. It is then the task of the scoreboard
to perform data checking.

5. VERIFICATION FLOW
Usage of injector cells allow to model CDC issues in RTL
simulations. These injectors have to be added in an existing
verification environment. And it is mandatory to instantiate them on
all first flip-flops of the receiving clock domains.
To ensure efficient usage of these injectors, a methodology has been
defined.

As injectors must be plugged in an existing verification environment,
the methodology can be composed of two main phases:

• Phase 1: Building of a standard coverage driven
verification environment for a multi-clock IP.

• Phase 2: Usage of the injectors in the verification
environment built in phase 1.

Here is a detailed description of those phases.

5.1 Phase 1
Typical functional verification applies to multi-clock IPs. This first
phase consists in the building of the verification environment. It must
respect the coverage driven verification methodology and pay special
care to the clock generation.

Clocks must be generated according to clock scenarios, defining
clock frequencies at which the IP will have to work. These scenarios
must appear in verification plan of phase 1.

The coverage of phase 1 needs the full functional coverage of the IP,
which has to be crossed with the clock scenarios coverage. Here is a
summary of phase 1 steps.

Figure 7 – Phase 1 steps

This figure shows typical verification steps on the left. Steps are
added on the right to deal with multi-clock aspects.

corruption_injector

corruption_injector

corruption_injector

corruption_injector

corruption_bus_monito

r

Coverage of
Functional Features

Coverage of Clock
scenarios

Coverage of phase 1

cross

Clock scenarios
definition

Clock generator
and

drivers
implementation

Coverage items
for clock scenarios

Verification docs
writing

Verification
environment and

 tests writing

RTL simulations
and debug

This first phase is qualified with a coverage which is a cross of the IP
functional coverage and the clock scenarios coverage.

Once the coverage has reached the targeted value, it is time to switch
to phase 2, to address CDC issues.

5.2 Phase 2
In this phase, we can investigate specific CDC issues, thanks to the
injectors. There must be one injector instantiated for each flip-flop
subject to metastability, i.e. each first flip-flop of a receiving clock
domain.

Phase 2 is divided in 3 steps: recognition, instrumentation and
corruption. Here is a schematic view of phase 2:

Figure 8 – Phase 2 steps

5.2.1 Recognition
Injectors have to be connected on each flip-flop subject to
metastability. Recognition step consists in identifying all
synchronization elements of the DUT.

This recognition must be as automated as possible. For that, we rely
on structural checking tool, in our case Spyglass from Atrenta.
Spyglass contains some CDC check rules which can provide the list
of CDC path endpoints.

• clock_sync02 which reports the recognized
synchronization structures.

• clock_sync01 which reports unrecognized synchronization
structures. As we want to model effect of timing violations
on all flip-flops which are subject to it, we need to consider
this list.

From these reports, it’s possible to build the list of pins on which the
injectors must be connected.

The methodology directly relies on the correctness of this list. So,
special care must be given to the setup of Spyglass and to the
filtering of its reports.

Reconvergence coverage requires the lists of resynchronized signals
which reconverge in the receiving clock domain. For this task, we
also use Spyglass. Several CDC check rules are necessary to build
the list of reconverging signals:

∙ Clock_sync03b provides reconvergence of signals coming
from different clock domains.

∙ Ac_conv01 and Ac_conv02 provide reconvergence of
signals coming from the same clock domain.

5.2.2 Instrumentation
This step consists in the instantiation of the injectors and of the bus
monitors.

Injectors are instantiated by loading an e-configuration file. This file
contains the configuration of each injector. This configuration is
done thanks to macros and is directly given by the list of
synchronization elements provided by the recognition step.

Bus monitors will collect information from several injectors, in order
to build reconvergence coverage. The instantiation of these monitors
is also done in an e-configuration file. It consists in defining the list
of injectors a bus monitor is connected to. This list is provided by the
recognition step.

The writing of the e-configuration files is done thanks to a script,
using the outputs of the recognition step.

5.2.3 Corruption
This step consists in running the regression built in phase 1, with the
injectors activated.

Running the regression with the injectors might trigger some new
bugs. To help debug, it is then possible to constrain the injectors so
to deactivate some of them or activate them in restricted conditions.

Phase 2 ends when the targeted coverage is reached. Some loops
might be required with design teams when targeted reconvergence
coverage is not reachable. It can occur when some reconverging
signals have mutually exclusive states or transitions. Those
transitions must be removed from the reconvergence coverage.

5.3 Verification qualification
The quality of the verification is measured thanks to the full
coverage. This coverage is given by the sum of coverage of phase 1
and the coverage of phase 2.

Figure 9 – Full coverage definition

Coverage of
phase 1

Coverage of
phase 2 Sum

Full coverage

Signal level
coverage

Recognition

Instrumentation

Corruption

Reconvergence
coverage Sum

Coverage of
Phase 2

6. RESULTS
The methodology is being deployed on several asynchronous IPs.
First application was done on asynchronous protocol bridges, as
these IPs are inserted on critical data paths of the SOC. It is now
used for clock generator and power management IPs.

The methodology allowed finding several bugs due to CDC issues.
In particular, it was applied to an IP, in which one bug was found
during gate level simulations. Thanks to the injectors the bug could
be reproduced during the first RTL simulation.

Some coverage is provided automatically by the package and can be
used for the qualification of the verification environment. As
transitions on the inputs can be mutually exclusive, in some case
manual refining is needed for the reconvergence coverage goals.

The simulation run-time overhead has been computed on an
asynchronous AXI-AXI bridge verification environment. The
comparison is done, running the same test with the same seed on the
environment of phase 1 and the environment of phase 2. The
overhead is 37%.

The flexibility of the solution allows deploying it on larger IPs, such
as system buses or in the future on NoCs. It is also possible to benefit
of the corruption injectors during gate level simulations. This way,
the behavioral model of the flip-flops could be overridden to model
metastability effects.

7. CONCLUSIONS
GALS approach for new 3G baseband SoCs adds a lot of
asynchronous paths. Some of those paths are extensively used as
they are part of the system buses.

Special care must be given to the verification of those asynchronous
paths. But sequential elements receiving data from an asynchronous
clock domain are subject to timing violations on their input. As RTL
simulations are not able to model the effect of those timing violation,
some bugs due to CDC issues are not detectable.

The methodology presented here provides a solution to model CDC
issues in RTL simulations. This way, it allows discovering bugs
related to metastability effects, early in the project life.

The solution is compatible with a coverage driven verification
methodology and can be added to an existing verification
environment. It doesn’t require DUT instrumentation nor
recompilation.

8. ACKNOWLEDGMENTS
Many persons contributed to develop the methodology and to
deploy/debug it.
I want to thank STEricsson design and verification team members for
their support, useful advices and technical knowledge sharing.
I also want to thank Patrick Oury, from Cadence, for is efficient
support and his proposals for the development of the injectors.

9. REFERENCES
[1] Mark Litterick, DVCon 2006 Pragmatic Simulation-Based Verification of
Clock Domain Crossing Signals and Jitter using systemVerilog Assertions.
[2] Roger Sabbagh, Hiroaki Iwashita, DVCon 2008, Does Your Simulation
Model Metastability Effects Completely and Accurately?
[3] Clifford E. Cummings, Sunburst Design, Inc., SNUG-2001, Synthesis and
Scripting Techniques for Designing Multi-Asynchronous Clock Designs
[4] Ran Ginosar, VLSI Systems Research Center, Technion—Israel Institute
of Technology, Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems (ASYNC’03), Fourteen Ways to Fool
Your Synchronizer
[5] Spyglass 4.2 Application Notes, Metastability Analysis in Dynamic
Verification Flow.

