WIND RIVER TECHNOLOGY FORUM 2023

Security In Wind River Linux 风河Linux的信息安全实践

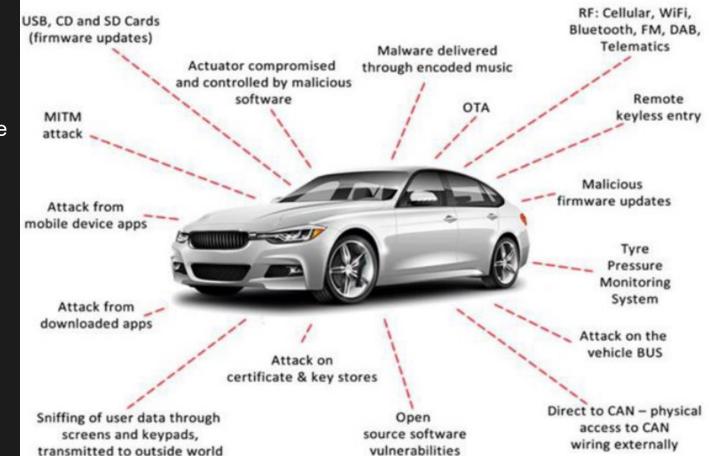
蔡志鸿, CISSP/技术应用经理 2023.10.17 WNDRVR

Agenda

1 Automotive Security Overview

2 Wind River Linux For Automotive Security

3


Use Cases

Automotive Security Overview

- Security Challenges
- Security Regulations and Standards
- CIA Triad
- CIA implication for Automobile

Security Challenges

- More connected vehicles, more vulnerabilities
 - Connected Vehicles: 230M (2021) -> 571M (2025)
 - Cybersecurity Risks
 - Remote hacking, malware attacks, and unauthorized access, personal information (vehicle occupants) leakage
 - Maintain the security of the vehicle throughout its lifecycle
- Complicated software, huge code base
 - ADAS, Infotainment, AI algorithms, ...
- The attack surface of a connected vehicle

Security Regulations and Standards

ISO/SAE 21434: Road Vehicles – Cybersecurity Engineering

- Provides guidelines for establishing a cybersecurity framework for vehicles (risk assessment, threat modeling, and defining cybersecurity processes throughout the vehicle's lifecycle)
- UN Regulation No. 155, "Cyber security and cyber security management systems"

GDPR (General Data Protection Regulation) Compliance

- Applies to vehicles operating in the European Union

Collaboration with Industry Standards

- e.g Auto-ISAC (Automotive Information Sharing and Analysis Center) facilitate the sharing of cybersecurity threat intelligence and best practices
- SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

 developing cybersecurity processes, strategies, and measures to protect vehicles from cyber threats, unauthorized access, and malicious activities

CIA Triad

3 pillars of information security

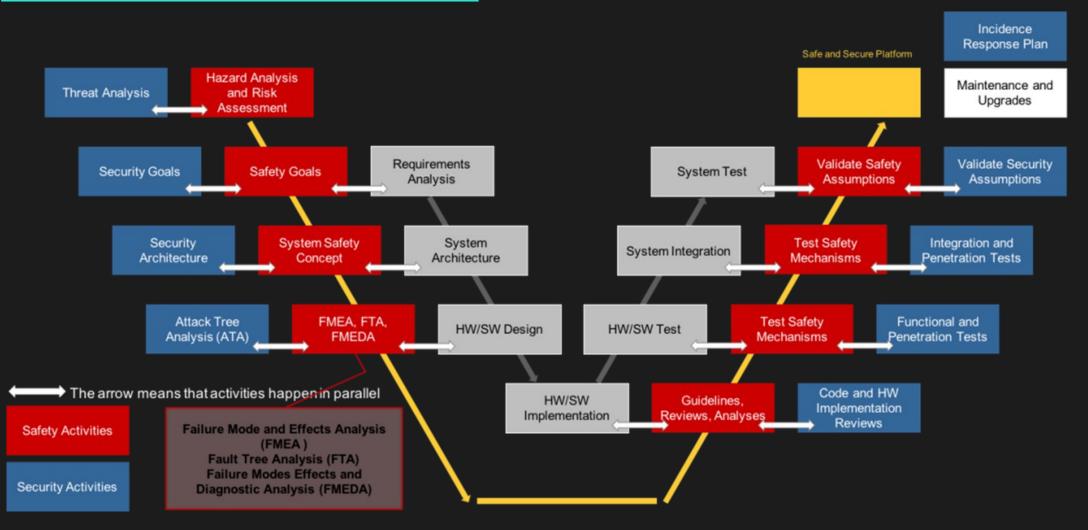
- Security Assessment Security Policy Confidentiality Integrity Availability Countermea Privacy Data Integrity sures Separation Boot Process Whitelisting Authentication Kev Intrusion Management Authorization Protection & Accounting Management Development Processes Trusted Platform
- The term "information security" means protecting information and information systems from

unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide—

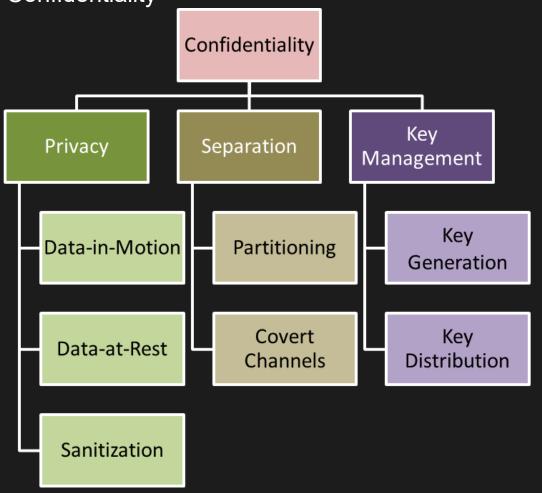
- (A) integrity, which means guarding against improper information modification or destruction, and includes ensuring information nonrepudiation and authenticity;
- (B) confidentiality, which means preserving authorized restrictions on access and disclosure, including means for protecting personal privacy and proprietary information; and
- (C) availability, which means ensuring timely and reliable access to and use of information

CIA implication for Automobile

- Confidentiality
 - Protecting personal data like driver profiles, contact information, location data, and even biometric information
 - Securing communication channels for over-the-air software updates, navigation services, and entertainment streaming
 - Securing safety-related information, such as sensor data from cameras, radar, and LiDAR systems
- Integrity
 - Prevents unauthorized tampering with boot process, software, firmware, or configuration settings within the vehicle's Electronic Control Units (ECUs)
 - OTA updates to enhance features, fix bugs, and address security vulnerabilities
 - Vehicle diagnostics and usage statistics
- Availability
 - Fundamental for individual mobility, emergency services, mobility services like ride-sharing, and public transportation etc.
- Stranded vehicles can inconvenience occupants and may require costly rescue operations


Wind River Linux For Automotive Security

- Security Development Lifecycle versus Safety
- Confidentiality
- Integrity
- Availability



Security Development Lifecycle versus Safety

Confidentiality

Decomposition of Confidentiality

Confidentiality – Privacy

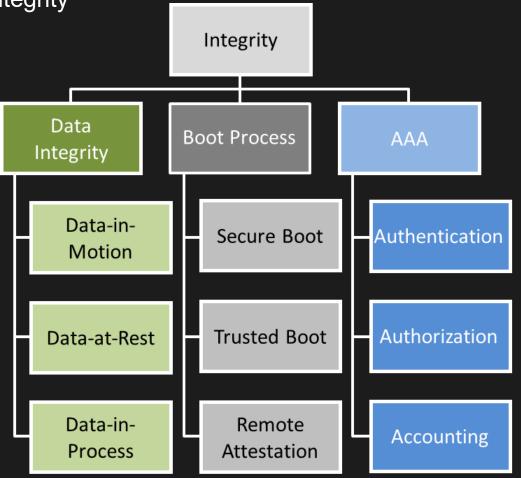
- Privacy is implemented using cryptography
- Symmetric use the same key for encryption and decryption
- Asymmetric uses a pair of keys as part of the cryptographic function
 - Public key known to any party
 - Private key known only to one party
 - The public key is mathematically related to the private key
 - mathematically infeasible to determine the private key from the public key
 - For privacy, encrypt with the public key
 - can only decrypt with the private key
- Related Open Source Software
 - OpenSSL/OpenSSH/GnuPG/strongSwan/ipsec-tools/vsftpd (data-in-motion)
 - LUKS for Full Disk Encryption (FDE)/HSM for keys and credentials (data-at-rest)
 - __shred/hdparm (sanitization)

Privacy
Data-in-Motion
Data-at-Rest
Sanitization

Confidentiality – Others

- It is the key that provides the privacy to the ciphertext
 - Random number generator (RNG)
 - Certification of algorithms (e.g FIPS 140-2 certified module)
 - Establish a secure communication path for key distribution

Separation

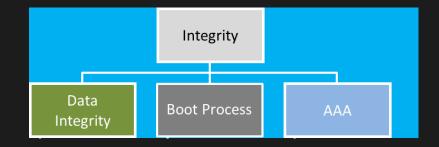

- Partitioning is used to create enclaves to protect the data within each VM
- Detect and monitor covert channels that transfer information and violate the system's security policy

Related Open Source Software

- haveged/libjitterentropy/Libksba (Key Generation)
- keyutils/PKI/IKE (Key Distribution)
- Libvirt/refpolicy-mls/vlan (Partitioning)
- Iptables (Covert Channels)

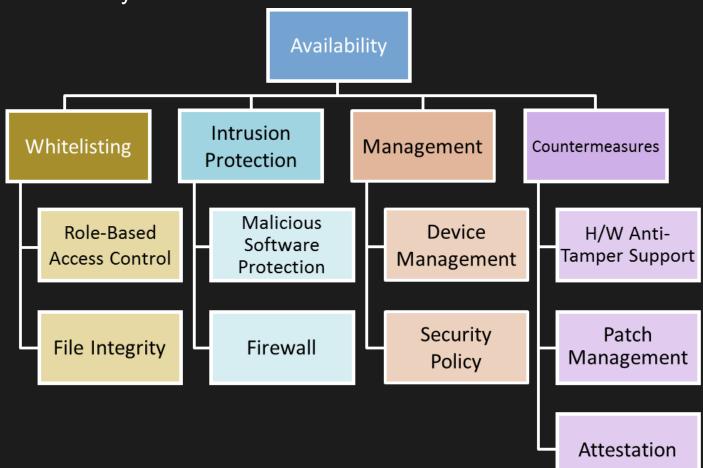
Integrity

Decomposition of Integrity



Integrity

- Assurance of data is not modified
 - Over a network
 - Stored on the device
 - While being processed
- Know what the device booted
 - Secure boot is purely hardware driven
 - Trusted boot is software driven with hardware assist
 - Remote attestation allows a trusted device to present reliable evidence to remote parties about the software it is running


Within the device

- Verification of the process / task / partition making the system call
- Determination of the request is allowed
- Logging of security-related events
- Related Open Source Software
 - openssl/anspass/fuse/trousers (Data Integrity)
 - efibootmgr/mokutil/OPTEE/tpm_quote-tools (Boot Process)
- Libpam/oath/openIdap/freeradius/polkit/audit/rsyslog/sysklogd/syslog-ng (AAA)

Availability

Decomposition of Availability

Availability – Guideline

- Use the Principle of Least Privilege
- Use a firewall to block all unused ports, protocols, etc.
- Provide a path to updating the software on the embedded device
- Provide hardened memory protections
- Enable a mechanism to ensure that what is running on the embedded device is what is expected

Availability – Configuration

WHITELISTING

- Acl/SELinux/AppArmor/IMA

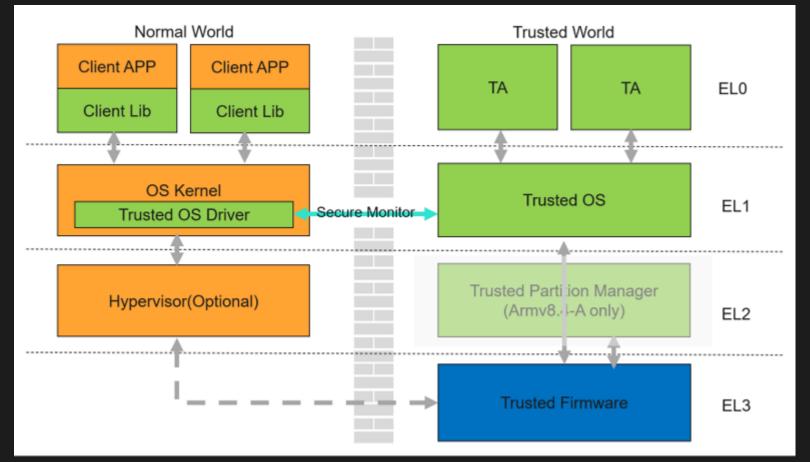
INTRUSION PROTECTION

- Detection & Prevention
- Ebtables/iptables/Samhain/snort

MANAGEMENT

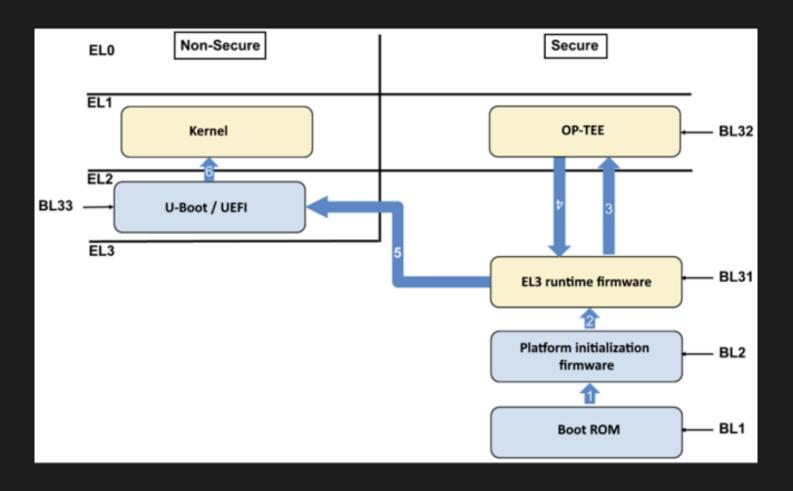
- Active control and analysis of domain controllers
- Software updates/Security Audit Log analysis/Security Policy updates

COUNTERMEASURES

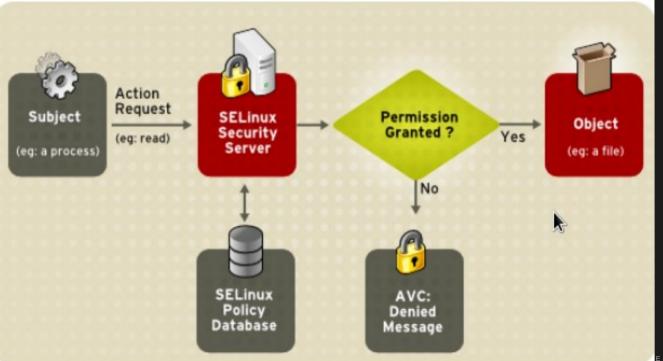

- An action taken to reduce or neutralize a danger or threat
- Dnf/docker/mcelog/Zabbix/nagios

Use Cases

- OPTEE
- SELINUX
- CVE


OPTEE

OS Kernel: Wind River Linux/ Trusted OS: OPTEE (Open Portable Trusted Execution Environment)



OPTEE BOOTUP

WHAT IS SELINUX

- A labeling system
- Every subject (process/user) has a label
- Every object (files, directories, network ports, ipc, process etc.) on the system has a label
- The SELinux policy controls how process/user labels interact with other labels on the system
 - Denied if not specific rule defined
 - Label = security context
 - USER:ROLE:TYPE:LEVEL
 - system_u:system_r:haval_t:s0-s15:c0.c1023
- The kernel enforces the policy rules.

POLICY RULES

- Statement: COMMAND SOURCETYPE TARGETTYPE:CLASS PERMS;
 - allow staff_t etc_t:file { open read getattr ioctl lock};
 - Read: allow process labelled with staff_t type to open/read/.. files labelled with etc_t type
 - Also call Type Enforcement
- COMMAND
 - allow, dontaudit, auditallow, neverallow ...
- CLASS
 - file, dir, sock_file, tcp_socket, process ...
- PERMS
 - read, open, write ..
- SOURCETYPE/TARGETTYPE
 - Defined as needed =>
- m4 macro language
 WNDRVR

·#
Declarations
type haval_t; type haval_exec_t; init_daemon_domain(haval_t, haval_exec_t)
<pre>#permissive haval_t;</pre>
<pre>####################################</pre>
arrow navar_t_serr:unix_stream_socket_create_stream_socket_perms;

#

WRL LTS SELINUX

- Policy source
 - RELEASE_2_20210203 <u>https://github.com/SELinuxProject/refpolicy/tree/RELEASE_2_20210203</u>
 - +Yocto patches: https://git.yoctoproject.org/meta-selinux/tree/recipes-security/refpolicy/refpolicy?h=hardknott
 - + WRL patches: ./layers/wrlinux/wrlinux-distro/dynamic-layers/selinux/recipes-security/refpolicy/refpolicy-wr
- SELinux Policy Types
 - refpolicy-mls (default) => 408 modules, TE+MLS
 - refpolicy-standard => 408 modules, TE
 - refpolicy-minimum => 26 core modules, subset of refpolicy-mls, TE+MLS
 - refpolicy-targeted => 408 modules as refpolicy-mls, only constrain service domains, unconfined for login users
- Policy name => check sestatus

100000 gomaalmoll. " Doboadaab		
SELinux status:	enabled	
SELinuxfs mount:	/sys/fs/selinux	
SELinux root directory:	/etc/selinux	
Loaded policy name:	wr-mls	
Current mode:	enforcing	
Mode from config file:	enforcing	
Policy MLS status:	enabled	
Policy deny_unknown status:	allowed	
Memory protection checking:	requested (insecure)	VER. ALL RIGHTS RESERVED
Max kernel policy version:	33	VER, ALL RIGHIS RESERVED

CVE (Common Vulnerabilities and Exposures)

- Exported vehicles require security scanning
 - Blackduck/tencent security/360 security
- Product Security Incident Response Team (PSIRT)

What we do for standard products that are active!!

Monitoring

All the kernel features, user packages, and Linux tools, which are supported in the standard Wind River Linux distributions, are monitored for security vulnerabilities against the incoming reports.

Assessment

When Wind River is notified of a potential vulnerability by one of the monitored advisory groups, we first determine whether any supported Wind River product is actually susceptible to the vulnerability.

Notification

Once the assessment phase is complete, we notify customers of the level of susceptibility.

Remediation

Less severe vulnerability patches are delivered via the monthly product updates.

Summary

- More connected vehicles, more concerns on security in vehicles
- CIA (Confidentiality, Integrity, Availability) is golden standard to analyse and enforce automotive security
- Wind River Linux follows CIA Triad to implement and harden security for intelligent ECU controllers in vehicles
- Wind River gathers strong security capability in serving AUTO customers in the journey toward developing secure and safe vehicles